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ABSTRACT

Matching two sets of curves in three-space can be accomplished efficiently when

small sets of points are used to represent each set. Two methods of choosing

representative 'points of closest approach' of a pair of smooth curves in three-space

which have been corrupted by noise are investigated. The methods are 1) aggrega-

tion of a centroid-like point, and 2) determination of points of closest approach

along polynomial fits to the noisy curves in the region of closest approach. Random
noise with a pseudo-normal distribution was added to computer generated curves to

provide an environment of controlled data for testing the different point selection

procedures. Performance of the procedures was evaluated by measuring the separa-

tion of two sets of curves after they had been matched using representative points.

It was observed that the 'centroid' method allows better selection of points than qua-

dratic or cubic fits when substantial lengths of the curves can be used, but that a

cubic fit of coordinates vs arc length gave better results when relatively short

lengths of curve were used. The quadratic fits behaved very badly. The results

have application to data reduction for efficient recognition of three dimensional

objects, and the routine for measuring separation between sets of curves has many
interesting applications.

1. Introduction

An approach which may prove useful in object recognition by computer is the

extraction of significant curves from the mass of low level vision data made avail-

able, for example, by an imaging range sensor. Object recognition would then

reduce to a process of matching sets of curves in three-space. If a small set of points

could be found which would effectively represent a set of curves object recognition

could be performed even more efficiently Such a set of points might be defined in

many ways, only one of which is considered here: for some pairs of curves points of

closest approach are well defined and can be exploited if such points can be easily

defined for noisy curves.

The following problem is considered: given a pair of smooth curves in three-

space which have well defined points of closest approach, how can these points be

best determined when the curves are corrupted by noise. By way of illustration, the

dashed line segments in Fig. 1 have as endpoints some of the points of closest

approach for a set of curves. In this work all curves have been chosen so each pair

of curves has at most one pair of points of closest approach. Since object recogni-

tion lies at the heart of this work, success of procedures to generate representative

Work on this paper has hccn supported by Office of Naval Research Grant NOO014-82-K-03S1, National

Science Foundation CER Grant DCR-83-2(W85, and by grants from the Digital Equipment Corporation and the

IB.M Corporatiim.



points is measured by the quality of matches made using the representative points.

Fig. 1 Dashed lines connect some "points of closest approach"

Points representative of curves such as the circles in Fie. 1 could be defined in

many ways. For example, centroids of the curves might serve; however, if curves

are less than fully observed the centroid of a partly observed object might not

correspond properly with the centroid of a fully observed model. Points of closest

approach overcome this difficulty by providing a set of points which usefully

describes a set of curves and consists of points which are independent of translation,

rotation, and partial reduction of the data set. If such representative points are well

chosen they will also be relatively unaffected by noise. The experiments reported

here explore two methods by which representative points of closest approach can be

generated with particular attention to the effects of random noise.

The paper is organized as follows. Section II provides background information

on work in object recognition and explanation helpful in understanding these experi-

ments. In Section III two methods for choosing representative points of closest

approach are described, and in addition procedures used to generate synthetic

"depth" measurements of objects, filters to degrade perfect data through the addi-

tion of random noise and other distortions, a routine to match two sets of points and

a procedure for measuring the spatial separation of two sets of lines in three-space

are given. In Section IV the behavior of the two different point generation methods

is examined closely for different conditions of noise and amount of length of arc

use. In section V the results are summarized and considered in the broader context

of robotics.

2. Background and Motivation

Computer recognition of an object can be considered to be comparison of an

observed object with a set of model objects to discover the identity, location, and

orientation of the observed object. A key element of any successful procedure for

object recognition must be reduction of the enormous amount of raw vision data to

an object description which can be easily compared with a number of models to find



a matching object. Reduction of depth measurements (or depth-related images, such
as those used in photometric stereo) has often consisted of generating regions (usu-
ally planar) whose character and connectivity can be used for object identification

[SS71][OS81][FH83][B84][H85]. Bolles and coworkers used clusters of features
such as holes and corners to determine the identification and location of 2D indus-

trial parts from 2D images [BC82], and extended this work by extracting edges and
planes as features from range images to determine the identity and location of 3D
parts [HB84]. The recent review by Besl and Jain [BJ85] covers many aspects of the

problem of object recognition.

One method of object recognition proceeds from the assumption that suitable

lines in three space can be used effectively to describe 3d objects. Suitable lines

might be edges (of various types, such as sharp discontinuities, occluding contours,
changes in reflectivity on a smooth surface) or geometrically defined lines (such as

the line where a cylinder becomes tangent to a plane). There should be no require-
ment that lines be easily parametrized, although special cases of straight lines and
circles are likely to be of considerable interest in the identification of machined
objects.

A method for describing a general curve in three-space has been niven
[BSSS86] which uses a list of points, and such descriptions were used to identify an
observed curve as being the same as or different from a previously observed curve.
Extension of that matching procedure to objects described by more than one curve
is not obvious, since curves from observations of an object in different orientations
may be recorded in different orders, and matching all sub-curves with all others
would increase computation combinatorially.

Computation can be significantly reduced if a small set of representative points

is used to describe an entire object. Representative points might be vertices or
centers of holes, and many other types of representative points can be imagined.
In the present work objects were described by sets of curves which (in the absence
of noise) would have unique and useful points of closest approach. While not
equivalent to a full description of the curves, a sub-set of these points of closest

approach could be used as geometric features, since these points are independent nf

the location and orientation of the object and can be used to match points generated
in a similar manner from a model set of curves. When selected points of object and
model are given in the same order the computation required for matching is quite

small.

Matching is performed using the same least squares matching algorithm of

[BSSS86], but only a very small number of points is used. This routine returns the

translation and rotation uhich must be applied to an observed object to bring it into

best juxtaposition with a model, and the least squares distance between the sets of

points matched. However, this distance cannot be used as a measure of the quality

of the match except when significant mismatch is indicated. If representative points

are badly chosen (e.g. nearly colinear) or if they are affected by noise the matching
routine may return a distance indicating a good match uhile the overlay of the

observed object on the model looks terrible. For this reason a method was
developed to measure the separation between two sets of curves which are supposed
to be close in real space.



When two curves are described with infinite resolution points of closest

approach can be determined with arbitrary precision. However, curves used in

object recognition come from observations, where precision is limited by sampling

interval, systematic deviations, and random variations. (It should never be assumed

that noise can be eliminated by improving the sensor: well established physical prin-

ciples guarantee that uncertainty will e.xist at some level of observation, and

engineering trade-offs usually result in sensors which return considerable noise.)

Curves from observations usually originate from a sensor (or a low level processing

routine) as lists of points. Simply choosing closest points on a pair of curves usually

selects points which deviate considerably from the 'ideal' curves, and experience has

shown that these points are not well suited for matching. Two methods of choosing

representative points are investigated here: aggregation of a centroid-like point

using a number of points on each curve near the noisy point of closest approach,

and determination of the points of closest approach along smooth polynomial fits to

both curves in their regions of closest approach.

In the experiments described below these two methods of selecting representa-

tive points are investigated for several choices of how much of the curves to use

with different amounts of pseudo-normal random noise. The effectiveness of each

method was determined by measuring how far the object was from the model after

having been translated and rotated to coincide with the model on the basis of param-

eters returned from the match.

3. Procedures and Programs

The investigations reported here center on the behavior of two methods of

selecting points to represent a set of noisy curves, but other procedures have neces-

sarily been developed and used Since it is difficult to vary the amount of noise in a

controlled manner with real measurements, procedures to generate synthetic data

and to corrupt this data realistically were developed. The 'matching' procedure

[SS85][BSSS86] has been used in a somewhat novel way, and a method of determin-

ing the 'separation' of two sets of curves has been developed.

3.1. Data Generation and Corruption

The objects used in these experiments derived from one "view" of a synthetic

flower pot with polka-dots. The flower pot was constructed by mapping circles onto

the surface of a cone, with distance along the surface of the cone approximated to

avoid elliptical integrals. The circles were sampled at regular intervals to provide a

list of points which represented the edges of the dots; a "view" of the pot was con-

structed by keeping only those parts of the circles which lay in the front 80% of the

pot after it had been rotated by some angle about its (vertical) axis of symmetry.
The pot had 12 circles spaced irregularly about it, and it was possible to reconstruct

the pot by repeatedly matching views made at intervals of about 30 degrees using

only points of closest approach of the circles as feature points. The individual

curves were designed to be nearly indistinguishable: all circles had a radius of 1.6

units except one with a radius of 1.9 units. Each view was stored as a text file con-

sisting of lists of x,y,z coordinates representing the curves, in the same manner as

curves observed by the range sensor. When a curve was closed (i.e. a complete



circle) this was indicated by setting the last point in the list equal to the first point.

Some inaccuracy was introduced in the generation of the data by listing only 3

decimal places, a precision comparable to that obtainable with a very fine depth

sensing device.

This ncarl>' perfect data was corrupted by randomization of the starting point

of closed figures, randomization of the direction of listing of points, and addition of

pseudo-random noise having an something like a normal distribution. For purposes

of testing, data sets could be arbitrarily translated and rotated (transformations

which the matching program recovered perfectly). The corrupted data was quite

similar to measurements typically derived from registered depth and intensity

images [BSSS86]. The corrupted data resembled real data also in that the data

points did not occur at regular intervals along the curves. To provide a set of points

to be used for all processes described below the curves were sampled at intervals of

equal arc length. A sampling interval of 0.3 was used in all these experiments,

since this was found to be optimum in earlier work [BSSS86] with curves of similar

size.

As data base for the random numbers a file of 2550 randomly distributed digits

between and 7 was created. The digits through 7 had frequencies of 999, 583,

348, 260, 160, 96, 75, and 29 respectively. Different patterns were created by step-

ping through the file at different positive and negative intervals (avoiding factors of

2550) and starting at different offsets. Noise was added to each point by adding

A*nl to X, A*n2 to y, and A*n3 to z, where nl-3 are subsequent random digits and

A = av.dev/k is a scale factor. The constant k (3.48) was chosen empirically for

this set of numbers so the observed RMS deviation coincided in magnitude with the

input average deviation. This procedure provided sufficient variety of noise so

matching was not spuriously affected, and the corrupted curves visually resembled

actual data. The amount of noise used varied from practically nothing to several

times that typically encountered with real data.

3.2. Selection of representative points

Two methods were used to determine representative "points of closest

approach": in one the points were formed as the centroids of all points within a cer-

tain arc-length of the initial point of closest approach, while in the other the closest

points along quadratic or cubic fits to all points within a certain distance from the

initial point of closest approach were used. Initial points of closest approach were

simply the pair of points on the two curves where were closest to each other. Here

(as in all further work) the points used to describe the curves were those sampled at

equal intervals along the curves.

To form the centroid-like representative point coordinate values for the 2n

sampled points adjacent to the initial point (n on each side) were averaged. If the

curve was closed all 2n points were used, but if the curve was open and a point of

closest approach was less than n from an end fewer points were used, the reduction

being equal on both sides and for both object and model curves. The number n was

varied in the course of the experiments, taking values 5, 9, and 15, this last value

corresponding to most of the data in these figures.

Low order polynomial approximations of coordinate values vs arc length were

made in the region of the initial points using a least squares procedure. Constants
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in the equations

X = a + bs + cs'^ and X = a + hs ->r cs^ + ds^

were found for A' = x, y, or z. Separate constants were determined for each coordi-

nate, thus a curve was described by 9 constants in the quadratic case case and by 12

in the cubic approximation. Here s is arc length from the initial point. All consecu-

tive points less than a particular maximum arc length in each direction were used in

the fits; maximum arc length values used in the experiments were 1.5, 2.0, 2.7, and

4.5, corresponding approximately to the values of n used in the centroid method. (A

second parametrization was tested in which s was the direct distance from the start-

ing point rather than the distance along the curve, and the experimental results were

very similar to those of the arc length parametrization.) Constants were determined

for each coordinate and each curve, then the point of closest approach of the two

smooth parametrized curves was located numerically (within an epsilon of 0.003

along each curve).

Since performance of these procedures to choose representative points was

measured by matching complete sets of curves, the choice of which pairs of curves

should be used to represent the set could also be important. In this work the selec-

tion of pairs of curves was made by the experimenter with knowledge of which

curves on the observed object corresponded to which curves on the model. Matches

with many different sets of pairs were made for better indication of the performance

of the algorithms under a variety of conditions.

3.3. Matching of sets of representative points

After the observed and model sets of representative points were found the rou-

tine used to discover the best match of curves in three-space [BSSS86] was used to

return the minimum least squares distance which obtains between the two sets of

points, as well as the transformation (translation and rotation) which must be

applied to the observed set of points to bring it into best juxtaposition with the set of

model points. The algorithm requires a minimum of 8 points, and if fewer curves

were used additional points were interpolated between the representative points.

There was no requirement that the points be ordered in any way except that model
and observed points be listed in the same order.

3.4. Evaluation of matching: separation of two sets of curves

Because a very limited number of points was used, the least squares distance

returned by the matching routine does not reflect the degree to which the two sets

of curves correspond after the observed curve has been translated and rotated to

over-lie the model curve. Fig. 2 suggests the problem: how far is the set of heavy

curves from the light curves. The solution is relatively simple when the exact

point-to-point correspondence between all curves is known, but this is usually not

the case, particularly when curves are corrupted by noise. The central ideas of the

method presented here are to discover which curve in one set corresponds to which

curve in the other, then to follow corresponding curves point by point and accumu-

late the distance between the curves.

-6-



Fig. 2. Heavy curves are slightly rotated with respect to light curves.

Every point of the model (using the sampled points, of course) was placed in a

hash table, the hash function being designed to divide space into cubes 0.5 units on

a side. Each curve of the observed object was then checked point by point to see if

it was close to a point of a model curve using the same hash function, and the iden-

tity of the closest pair of points was retained. The hashing procedure was very sim-

ple, and placing a point in a cube already occupied overwrote the previous point.

Although in principle curves could be very close in space and not intersect in the

table (by occupying adjacent cubes) this appeared to cause no difficulty in practice:

a multiple hashing function which ensured that any point would find all points within

0.5 units did not improve performance of the procedure for finding corresponding

curves.

Using the closest pair of points (one on a model curve, one on an observed

curve) as starting points and after discovering the relative listing directions (by

checking for closeness of points about five points away from the starting points in

both directions), the separation of the two curves was accumulated while following

one curve point by point. (If no valid combination of listing directions could be

found no separation was accumulated.) The process continued until all observed

curves had been checked for hits (i.e. correspondence to a model curve) and fol-

lowed.

The separation between two corresponding curves A and B was determined by

accumulating the squares of the "distances" (determined as below), dividing by the

number of points, then taking the root; it is thus an RMS separation. Starting points

and listing directions were found as described above. The current point of curve A

was incremented and the following two points on curve B were checked to see if

either was closer to the current point on A. When a closer point was found the

current point B was set to this, and the next following two points were checked. In

the absence of noise the two current points (on A and B) would increment nicely in

step; with noise the current point B would hang up then jump ahead several points

(for obvious reasons). In practice even this two deep look ahead was sometimes

insufficient, and an additional constraint that if B failed to increment three times

running it was automatically incremented was implemented. The curve following

stopped when either of the curves ended, although closed curves were followed in a

natural manner. If excessive "distances" were observed for three out of five points.



or really excessive "distances" observed once curve following also ended. After a

pair of curves was followed to one end the routine returned to the starting points

and followed the curves in the opposite directions.

o

A o
°

o ? 5^

^ g-^ ^

Fig. 3. Heavy line shows the distance between points A and B

The "distance" between the two current points was calculated as the distance

between the point on A and the line through the point on B parallel to the line

through the two points adjacent to the point on B, as shown in Fig. 3. This pro-

cedure was used to reduce the effect of sampling interval, since simply accumulating

distance between points could make perfectly juxtaposed smooth curves appear to

be separated if they were not sampled at the same points.

Experience and tests suggest that the separation measured using this procedure

is meaningful for values up to about .5 but with limited power of discrimination

above this, the exact value depending on thresholds in the routine. The reason for

this is that curves with greater separations are not followed very far into the regions

of greater distances. This is desirable, since otherwise there is little protection

against following an incorrect curve. For separations less than 0.5 the value

returned appears to give an excellent measure of the separation of two sets curves,

although it cannot be used numerically as an absolute determination of the separa-

tion of two curves. Separation thus defined was used to measure the quality of the

matches described in the experiments below.

4. Experiments and Results

Two algorithms were implemented to choose representative points for pairs of

curves, and these were tested using computer generated data sets corrupted by vary-

ing amounts of noise. The sets of curves used in all of these experiments consisted

of five closed circles on the surface of a cone (analogous to the edges of circular

spots on a flower pot) plus somewhat less than half of a large circle about the axis

of the cone (analogous to a rim of a flower pot). This rim was used in very few

matches reported here, and had negligible effect. Each algorithm was tested by

matching three objects (i.e. sets of curves) against each other for several conditions

of length of curve and several selections of curve pairs. The quality of match was

evaluated on the basis of the separation of the objects after they had been placed in

best juxtaposition (using rotation and translation parameters returned by the match).

All three objects were the same basic data set with data translated and random-

ized. Object 1 was generated by translation 5 units along each of x,y, and z axes

followed by randomization of starting point and listing order for each curve; object

2 was not translated but was randomized in a similar but not identical manner;

object 3 was translated -5 units along x,y, and z axes and randomized. Noise was

added to each object in the same pattern, but since the starting point of the curves

had been changed before noise was added similar noise patterns were unlikely to

- 8



develop in corresponding places on the curves being matched. When noise was

reduced to zero matching these objects resulted in perfect juxtaposition and separa-

tion of 0.0.

Measuring the separation between two sets of curves was accomplished using

the curve following procedure described in section 3.4. This procedure was tested

by measuring the separation between two sets of curves which were slightly dis-

placed by several increasing amounts. "Displacements" such as translations, rota-

tions, expansions, skews, and combinations of these all showed increasing separa-

tion with increasing amount of displacement for all conditions of noise. Table 1

summarizes separations recorded for 5 different translations with 5 different

amounts of noise, and it is typical of all tests of the procedure for measuring separa-

tion. The displacements in Table 1 are along x,y, and z axes; the separations are

the average of 5 different conditions of noise (having the same average, deviation,

merely different random pattern).

Trans!



were consistently different from the average of both directions (the value reported

in the table) by ±20%. All separations reported below are averages of separations

measured in both directions, but the two values rarely differed by more than 5%
when both sets of curves were similarly noisy. The matching routine itself acts per-

fectly symmetrically, and it makes no difference which object is considered to be the

model and which the observed.

Quadratic and cubic polynomials expressing coordinates vs arc length were
generated using a least squares procedure for four different lengths of the noisy

curves. After the coefficients for the smooth curves were determined the closest

points on these fits were found (within an epsilon of 0.003 units along the curves)

and used as representative points. The different conditions are identified in Table 2

using Qu for quadratic and Cu for cubic, and the arc length on both sides of the

starting point which was used: 1.5, 2.0, 2.7, 4.5.

The centroid procedure used three different amounts of the curves, measured
in the number of points from the starting point on both sides. Since the curves were
sampled at intervals of 0.3, the numbers 5, 9, and 15 correspond to arc lengths of

1.5, 2.7, and 4.5 (on each side), comparable to the lengths used in the fitting pro-

cedures. In Table 2 the conditions are identified using Ce (for centroid) and the

number of points used in the aggregation of the centroid.

Table 2 presents the quality of match observed on the average for the various

conditions tested with the two procedures. The objects matched were identical

except for translations, randomization of starting points and listing order within the

component curves, and addition of random noise in varying amounts. High quality

of match corresponds to small separation of the curves after they have been brought
into closest juxtaposition using the match of their representative points. Separations

for the polynomial cases are averages of 5 different sets of two pairs of points,

while separations for centroid cases are averages of 9 different sets of two pairs of

points. This difference is not significant. Averages for matches of three different

pairs of objects are included to indicate typical variation.

- 10
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However, the centroid-likc representative points provide continually better matches

as the number of data points used increases. Increasing noise tends to decrease the

quality of match under all circumstances; the quadratic fit procedure appears to be

relatively less affected by noise because it behaves so poorly when there is little

noise. It should be observed that since the noise-free curves have a length of about

10 in these units, the polynomial fits Qu 4.5 and Cu 4.5 used almost all of a curve

for the fit.

The above matching results were obtained using two pairs of representative

points for each object. Since the objects consist of six curves, there could be as

many as 15 pairs of points; the five closed curves guarantee at least 10 pairs. Table

3 shows the effect that using different numbers of pairs of representative points has

on the quality of matches using the centroid algorithm with different amounts of

data (as in Table 2). The separations given arc average values: for 2 pairs, 9 dif-

ferent combinations are averaged; for 3 pairs, 5; for 4, 4; for 5, 2; for 10 pairs, only

one combination was used. In Table 3 separations are given for matching objects 1

and 3 only, but separations for the other matches (1 with 2, 2 with 3) are similar in

size and behavior.

No.Pts



5. Summary

The most significant result of these experiments is that sets of curves can be

matched well using representative points. This should lead to more efficient match-
ing procedures, since curves consisting of several hundred points can be identified

using ten representative points. While representative points do not fully describe a

set of curves they provide points useful for matching with similarly processed model
curves.

The use of centroid-like points to represent curves appears to be superior to

using polynomial fits because the quality of the representative point can be more
easily improved by using more data points. The weakness of the centroid method is

that the starting point (the data point closest to the other curve of the pair) can be

easily displaced from the point of closest approach on the "ideal curve" by noise,

and considerable improvement in the generation of representative points migiit be

made by attacking this problem. The aggregation of the centroid of a small (or

even large) number of points is computationally cheap.

While the cubic fit performed better than the centroid method with a small

number of data points, the extension of these results (made with curves which were
nearly circles) to more general curves is questionable. It seems likely that higher
order polynomials would be needed (with corresponding increase in computing
time), particularly in view of the failure of representative points made using qua-
dratic fits.

The successful use of representative points to match sets curves has some
implications for further work in object recognition. (Recall that procedures by
which curves significant to the identity of an object can be extracted from registered

range and intensity images are being developed.) Clearly the representative points
used in these experiments cannot be defined for all pairs of curves, and additional

classes of points should be developed. Use of such points for matchmg objects

requires that the points of object and model be listed in corresponding order, and
procedures to accomplish this should be developed. (If these procedures are strong
enough the actual matching is needed only in rare cases, and perhaps to return the

translation and rotation needed to bring the observed object into standard orienta-

tion.) It is likely that relationships between representative points will be useful in

these procedures.

Many procedures developed in the course of this work are useful utilities, but

are of little scientific importance. The routines used to generate synthetic data, the

general purpose filter for the modification of data, and the generation of pseudo-
normal random noise all fall into this category. However, the procedure for deter-

mining which curves are close in space has some interesting possible applications.

This use of hashing to efficiently detect closeness is not limited to curves; the same
technique can be used for surfaces or even solids, and in any number of dimensions,

since all that is needed is a set of points to represent the curve, surface, etc.

One possible application of this technique is real-time collision avoidance for

robots, especially in situations where the motion of a robot is determined by sensory

input from a changing environment. In simplest form, the work space would be

described by a set of points chosen at some sufficiently fine spacing whose coordi-

nates would be hashed into table. A similar set of points connected to the robot

13



would be checked for collision (using the same hash function) at some time far

enough ahead of robot motion that stopping would be possible. Refinements could

include variation of the surface sampling mesh and hash cube size depending on

speed and distance from obstacles and real-time updating of obstacles, including

using multiple robots in the same work-space. It should be noted that computations

of actual geometric distance need not be done, as observation of closeness in any

coordinate would provide sufficient warning.
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